Detecting Muons

Detecting Muons lucas Wed, 11/23/2011 - 17:13


As the name “Compact Muon Solenoid” suggests, detecting muons is one of CMS’s most important tasks. Muons are charged particles that are just like electrons and positrons, but are 200 times heavier. We expect them to be produced in the decay of a number of potential new particles; for instance, one of the clearest "signatures" of the Higgs Boson is its decay into four muons.

Because muons can penetrate several metres of iron without interacting, unlike most particles they are not stopped by any of CMS's calorimeters. Therefore, chambers to detect muons are placed at the very edge of the experiment where they are the only particles likely to register a signal.

A particle is measured by fitting a curve to hits among the four muon stations, which sit outside the magnet coil and are interleaved with iron "return yoke" plates (shown in red below, for the barrel region). By tracking its position through the multiple layers of each station, combined with tracker measurements the detectors precisely trace a particle’s path. This gives a measurement of its momentum because we know that particles travelling with more momentum bend less in a magnetic field. As a consequence, the CMS magnet is very powerful so we can bend even the paths of very high-energy muons and calculate their momenta.

In total there are 1400 muon chambers: 250 drift tubes (DTs) and 540 cathode strip chambers (CSCs) track the particles’ positions and provide a trigger, while 610 resistive plate chambers (RPCs) form a redundant trigger system, which quickly decides to keep the acquired muon data or not. Because of the many layers of detector and different specialities of each type, the system is naturally robust and able to filter out background noise.

DTs and RPCs are arranged in concentric cylinders around the beam line (“the barrel region”) whilst CSCs and RPCs, make up the “endcaps” disks that cover the ends of the barrel.

The muon system…


  • contains 2 million cathode strip chamber wires. Though each is as thin as a human hair, not a single one has broken;
  • formed the first and last slices of CMS to be lowered into the cavern with endcaps “YE+3” in November 2006 and “YE-1” in January 2008;
  • is aligned with the central tracker to within one sixth of a millimetre in order for the detectors to work together in reconstructing tracks;
  • is made of components built in 15 countries.

Making Tough Chambers

Many of the CSCs were built at two US universities and a national laboratory before being shipped all the way across the Atlantic to CERN, so the precision chambers needed to be robust. A test involving a road trip from Florida to California showed they could take some wear and tear, but the ultimate proof of their resilience came inadvertently during a beam test.

When physicists overseeing the beam test decided to reposition a chamber, one side of its support structure suddenly fell by more than 30 cm. Such an unprecedented test of robustness had the physicists worry about the fate of that unlucky chamber. Instead, they found it was still "taking data" in spite of its hard drop.

Cathode Strip Chambers

Cathode Strip Chambers lucas Wed, 11/23/2011 - 17:24


Cathode strip chambers (CSC) are used in the endcap disks where the magnetic field is uneven and particle rates are high.

CSCs consist of arrays of positively-charged “anode” wires crossed with negatively-charged copper “cathode” strips within a gas volume. When muons pass through, they knock electrons off the gas atoms, which flock to the anode wires creating an avalanche of electrons. Positive ions move away from the wire and towards the copper cathode, also inducing a charge pulse in the strips, at right angles to the wire direction.

Because the strips and the wires are perpendicular, we get two position coordinates for each passing particle.

In addition to providing precise space and time information, the closely spaced wires make the CSCs fast detectors suitable for triggering. Each CSC module contains six layers making it able to accurately identify muons and match their tracks to those in the tracker.

GEMs (Gas Electron Multiplier)

GEMs (Gas Electron Multiplier)
lapka Tue, 04/16/2019 - 17:28

Gas electron multiplier (GEM) detectors represent a new muon system in CMS, in order to complement the existing systems in the endcaps. The forward region is the part of CMS most affected by large radiation doses and high event rates, and we foresee these parameters to be again enhanced during phase 2 of the LHC. The GEM chambers will provide additional redundancy and measurement points, allowing a better muon track identification and also wider coverage in the very forward region.

The CMS GEM detectors are made of three layers, each of which is a 50 micron thick copper-cladded polyimide foil. These chambers are filled with an Ar/CO2 gas mixture, where the primary ionisation due to incident muons will occur. The CMS GEM detectors will be the first 1-2 m^2 sized chambers of this kind, compared with previous GEM detectors. A first batch of 144 chambers will be installed during 2019-2020 in the first disk of both endcaps. Multiple quality and performance tests have already been performed, as well as first measurements with cosmic ray muons. Others chambers will follow before phase 2 of the LHC, and will be installed during 2024-2026.

Muon Drift Tubes

Muon Drift Tubes lucas Wed, 11/23/2011 - 17:21


The drift tube (DT) system measures muon positions in the barrel part of the detector. Each 4-cm-wide tube contains a stretched wire within a gas volume. When a muon or any charged particle passes through the volume it knocks electrons off the atoms of the gas. These follow the electric field ending up at the positively-charged wire.

By registering where along the wire electrons hit (in the diagram, the wires are going into the page) as well as by calculating the muon's original distance away from the wire (shown here as horizontal distance and calculated by multiplying the speed of an electron in the tube by the time taken) DTs give two coordinates for the muon’s position.

Each DT chamber, on average 2m x 2.5m in size, consists of 12 aluminium layers, arranged in three groups of four, each up with up to 60 tubes: the middle group measures the coordinate along the direction parallel to the beam and the two outside groups measure the perpendicular coordinate.

Resistive Plate Chambers

Resistive Plate Chambers lucas Wed, 11/23/2011 - 17:26


Resistive plate chambers (RPC) are fast gaseous detectors that provide a muon trigger system parallel with those of the DTs and CSCs.

RPCs consist of two parallel plates, a positively-charged anode and a negatively-charged cathode, both made of a very high resistivity plastic material and separated by a gas volume.

When a muon passes through the chamber, electrons are knocked out of gas atoms. These electrons in turn hit other atoms causing an avalanche of electrons. The electrodes are transparent to the signal (the electrons), which are instead picked up by external metallic strips after a small but precise time delay. The pattern of hit strips gives a quick measure of the muon momentum, which is then used by the trigger to make immediate decisions about whether the data are worth keeping. RPCs combine a good spatial resolution with a time resolution of just one nanosecond (one billionth of a second).