CMS discovers associated production of a Z boson and an ϒ meson. At the CMS experiment, we have observed for the first time an exceptionally rare process: the associated production of a Z boson with an ϒ(1S) meson, the lightest bound state of…
  The Higgs boson is deeply connected to the mechanism that generates the masses of elementary particles. In the Standard Model (SM), which describes the properties of all elementary particles and the interactions among them, the Higgs boson…
  CMS scientists discover some of the rarest collisions that the LHC can produce – such as the scattering of light by light – and learn more about the quantum nature of electromagnetism, search for new particles, and much more. In everyday life…
  In a recent result, the CMS experiment has combined a comprehensive set of searches for the production of not one but two Higgs bosons – the result is a significant step towards observation of this elusive process, and constitutes a legacy of…
  In a first measurement of its kind at the LHC, the CMS experiment tests whether top quarks adhere to Einstein’s special theory of relativity, and improves the bounds on noncompliance by up to a factor of one hundred with respect to previous…
In an extraordinary feat of precision physics, CMS measures the mass of the W boson, and finds it to be in good agreement with the prediction by the Standard Model of particle physics. In the most precise measurement of its kind ever obtained at the…
  A primary goal of the Large Hadron Collider (LHC) is to hunt for evidence of beyond the Standard Model (BSM) dynamics through deviations from the Standard Model (SM) predictions. If the mass of BSM particles exceeds the energy accessible in…
  With the discovery of the Higgs boson in 2012, an important piece in our puzzle to understand the Universe was found. However, there are still many open questions: why is the Higgs boson so light? What is dark matter? How does gravity work at…
  The Higgs boson is a fascinating elementary particle, and its discovery twelve years ago cemented the standard model (SM) of particle physics as the most accurate description of nature at and below the electroweak energy scale. However, many…
  At the LHC, lead ions are smashed together at extremely high speeds to create a unique state of matter called the quark gluon plasma. Normally, quarks and gluons, such as those that make up lead ions, are confined within protons and neutrons…
  In the world of elementary particles, there are twelve generic types of fermions (spin ½ particles): 3 up-type quarks, 3 down-type quarks, 3 charged leptons, and 3 neutrinos. They come in three generations. The number “3” is really a magic…
  Since the discovery of the Higgs boson in 2012, scientists have been on an epic quest to measure its properties and hunt for any clues that might reveal new physics beyond the Standard Model (SM). One of the main studies consists of counting…